Loethen, Katie

From: Loethen, Katie

Sent: Monday, June 28, 2021 3:38 PM **To:** 'james.house@kohler.com'

Cc: 'sheridan@windstream.net'; McWilliams, Carrie; Sears, Jessica; Jain, Anmol Subject: AR0034347_Kohler ARP000021 January 2021 semi annual Pretreatment report_

20210628

James,

Kohler's 2018, 2019, and 2020 semi-annual Pretreatment reports were received, reviewed, and deemed complete. Kohler is in compliance with the reporting requirements in 40 CFR 403.12(e) as well as the Metal Finishing standards in 40 CFR 433.15. No further action is deemed necessary at this time.

Thank you for the complete reports,

Katie Loethen | Wastewater Engineering Intern

Division of Environmental Quality | Office of Water Quality

Permits Branch

5301 Northshore Drive | North Little Rock, AR 72118 t: 501.683.3001 | e: Katie.loethen@adeq.state.ar.us

Mr. Guy Lester NPDES Pretreatment Engineer Arkansas Department of Environmental Quality 5301 Northshore Drive, North Little Rock, AR 72118

Re: SEMI-ANNUAL REPORT 2nd HALF 2017

Dear Mr. Lester,

In accordance with 40CFR403.12 (e) we are submitting semi-annual reports for the months July 1, 2017 through December 31, 2017. Attached with this report is the TTO analysis for this period. Please contact me at 870-917-6215 should you have any questions.

Sincerely,

James House

Safety/Environmental Specialist

Attachments: TTO Analysis for the 2nd half of 2017

Cc: Jim Bilgo, EHS Supervisor, Kohler, WI

Erika Strand, Global Faucets Program Coordinator

Sheridan Waterworks

File

(4) FLOW	MEASUREMEN	VT.										
	INDIVIDUAL & TO	TAL PROCES	S FLOWS DISC	CHARGED TO	POTW IN GAL	LONS PER DA	Y		_			
	Proces	ss	Aver	age	Maxii	num	Type of	Discharge				
	Regulated (Core	& Anc)	67,	818	150	,000	POTW C	ontinuous				
	Regulated (Cyani	ide)	. ()		0	N.	/A				
	§403.6(e) Unregu	ulated*	()	- 1	0	N.	/A				
	§403.6(e) Dilute		()		0	N.	/A				
	Cooling Water		()		0	N.	/ A				
	Sanitary		44,	349	98,	092	РОТЖ С	ontinuous				
	Total Flow to PO	TW	87,	847	194	,299	*****	*****				
	*"Unregulated" has a precise	e legal meaning; see	: 40CFR403.6(e).								L. Harrison	
(5) MEASU	JREMENT OF F	OLLUTA	INTS									
A. TYPE	OF TREATMENT	SYSTEM					B. COMME	NTS OF TRI	EATMENT S	YSTEM		
							ater sample		-			
CHECK E	EACH APPLICABL	E BLOCK					ial lab for a					
						performed twice per shift. Results of in-house						
X	Neutralization					tests are hand delivered to city each Monday.						
X	Chemical Prec	•	ınd Sedime	entation		Monthly DMR is also submitted.						
X	Chromium Rec											
	Cyanide Destru	uction										
	Other											
	None											
C. THE INDU	USTRIAL USER MUST	PERFORM SA	AMPLING ANI) ANALYSIS O	F THE EFFLUE	ENT FROM ALI	L REGULATED	PROCESSES	CORE&			
ANCILLARY	(AFTER TREATMEN	NT, IF APPLIC	ABLE). ATTA	.CH THE LAB	ANALYSIS WH	ICH SHOWS A	MAXIMUM; T	ABULATE ALL	THE			
ANALYTICA	AL DATA COLLECTED	DURING TH	E REPORT PE	RIOD IN THE S	SPACE PROVID	DED BELOW. 2	ZERO CONCEN	TRATIONS AR	E NOT			
ACCEPTABI	LE; LIST THE DETECT	TON LIMIT IF	CONCENTRA	TION WAS BE	LOW DETECT	ION LIMIT.					ı	
	Pollutant(mg/l)	Cd	Cr	Cu	Pb	Ni	Ag	Zn	CN*	TTO*		
	Max for 1 day	0.69	2.77	3.38	0.69	3.98	0.43	2.61	MDL	2.13		
	Monthly Ave	0.26	1.71	2.07	0.43	2.38	0.24	1.48	MDL			
	Max Measured	0.008	0.44	0.26	0.015	1.07	0.02	0.09	0.02	0.00		
	Ave Measured	0.008	0.16	0.12	0.015	0.63	0.02	0.03	0.02	0.00		
	THE CONCENTRA'		E IF NO CEF	RTIFICATIO	ON IS PROVI	DED IN SEC	CTION 6 BEI	OW OR MA	ARK N/A IF	A		
Sample Loc	cation	#001 AFT	ER TREA	TMENT/B	EFORE D	ISCHARG	<u>E</u>					
	be (Grab or Com		COMPOS	SITE								
Number of	Samples and Fre	equency C	ollected		1/WEEK	- (IN-HOU	JSE 2/SHIF	<u>(T</u> :				
40CFR136	Preservation and	d Analytic	40CFR136 Preservation and Analytical Methods Use: Yes No									

<u>IFI</u>	CATION
_/	A. CYANIDE CERTIFICATION
	Based on my inquiry of the person or persons directly responsible for managing compliance with pretreatment standards, I certify that to the best of my knowledge, cyanide has not been used or generated in our processes which are regulated by the Metal Finishing (40CFR 433) categorical pretreatment standards since the filing of the last semi-annual compliance report.
!	(Typed Name)
	(Corporate Officer or authorized representative)
	Date of Signature
1	B. CHECK ONE: X §433.11(e)TOXIC ORGANIC ANALYSIS ATTACHED \$433.12(a)TTO CERTIFICATION
1	Based on my inquiry of the person or persons directly responsible for managing compliance with the pretreatment standard for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the waste waters has occurred since filing of the last semi-annual compliance report. I further certify that this facility is implementing the toxic organic management plan submitted to Arkansas Department of Pollution Control and Ecology.
	N/A (Typed Name)
	(Corporate Officer or authorized representative)
	Date of Signature
	CORPORATE ACKNOWLEDGEMENT (Optional)
	STATE OF ARKANSAS) COUNTY OF
]	Before me, the undersigned authority, on this day personally appeared of ,
	a corporation, known to me to be the person whose name is subscribed to the foregoing instruments(s), and acknowledged to me that he executed the same for purposes and considerations therein expressed, in the capacity therein stated and as the act and deed of said corporation.
1	Given under my hand and seal of office on this day of 2016
	Notary Public in and forCounty, Arkansas
P	My commission expires
L	

40CFR433 SEMI-ANNUAL REPORT CON'D FACILITY NAME:

KOHLER

(7) POLLUTIO	ON PREVENTION ACT OF 1990 [42 U.S.C. 13101 et seq.]
_	\$6602 [42 U.S.C. 1310] Findings and Policy pura (b) Policy - The congress hereby declares it to be the national policy of the United States that pollution should be prevented or reduced at the source whenever
	feasible; pollution that earnot be prevented should be recycled in an environmentally safe manner, whenever feasible; pollution that cannot be prevented or recycled should be treated in an environmentally safe
	mariner whenever feasible; and disposal or other release into the environment should be employed only as a last resort and should be conducted in an environmentally safe manner.
The User ma	y list any new or ongoing Pollution Prevention practices:
(8) GENERAL	COMMENTS
- CONTRICAL	
	ATTACHMENTS:
	TTO/CN Analysis
	Semi-Annual Metals Analysis
cc	: Erika Strand-Corporate EHS Program Coordinator
	Sheridan Water Office
	File
(9) SIGNATO	RY REQUIREMENTS [40CFR403.12(1)]
	I certify under penalty of law that I have personally examined and am familiar with the information in this semi-annual
	compliance report and all attachments, and that, based on my inquiry of those persons immediately responsible for obtaining the
	information contained in the report, I believe that the information is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.
	significant positions for submitting tasse intermation, including the positions of the and improvement.
	\mathcal{L}
	Bill Armstong 3200 TVV
	NAME OF CORPORATE OFFICIER OR AUTHORIZED REPRESENTATIVE SIGNATURE
	. 1 1
	Plant Manager of Arkansas Faucet Operations
	OFFICIAL TITLE BATE SIGNED

DATE	GALLONS	DATE	GALLONS	DATE	GALLONS	DATE	GALLONS	DATE
7/1/17	Saturday	8/1/17	99300	9/1/17	33100	10/1/17	Sunday	11/1/17
7/2/17	Sunday	8/2/17	99300	9/2/17	Sunday	10/2/17	102000	11/2/17
7/3/17	101900	8/3/17	95500	9/3/17	Saturday	10/3/17	117800	11/3/17
7/4/17	Holiday	8/4/17	58200	9/4/17	Holiday	10/4/17	126100	11/4/17
7/5/17	116300	8/5/17	38800	9/5/17	64300	10/5/17	100100	11/5/17
7/6/17	102900	8/6/17	Sunday	9/6/17	95400	10/6/17	41200	11/6/17
7/7/17	54800	8/7/17	112500	9/7/17	113100	10/7/17	52700	11/7/17
7/8/17	39200	8/8/17	103600	9/8/17	90100	10/8/17	Sunday	11/8/17
7/9/17	Sunday	8/9/17	83300	9/9/17	14500	10/9/17	106300	11/9/17
7/10/17	94700	8/10/17	109300	9/10/17	Sunday	10/10/17	64200	11/10/17
7/11/17	131500	8/11/17	46200	9/11/17	113800	10/11/17	117400	11/11/17
7/12/17	101600	8/12/17	Saturday	9/12/17	122500	10/12/17	114900	11/12/17
7/13/17	95600	8/13/17	Sunday	9/13/17	109400	10/13/17	80300	11/13/17
7/14/17	41600	8/14/17	107800	9/14/17	127400	10/14/17	Saturday	11/14/17
7/15/17	1000	8/15/17	101800	9/15/17	79100	10/15/17	Sunday	11/15/17
7/16/17	Sunday	8/16/17	100500	9/16/17	Saturday	10/16/17	126400	11/16/17
7/17/17	99100	8/17/17	95200	9/17/17	Sunday	10/17/17	101100	11/17/17
7/18/17	110700	8/18/17	37900	9/18/17	123600	10/18/17	110400	11/18/17
7/19/17	93200	8/19/17	34900	9/19/17	127100	10/19/17	115300	11/19/17
7/20/17	71400	8/20/17	Sunday	9/20/17	122100	10/20/17	84300	11/20/17
7/21/17	69500	8/21/17	140700	9/21/17	106200	10/21/17	37400	11/21/17
7/22/17	25100	8/22/17	113100	9/22/17	95800	10/22/17	Sunday	11/22/17
7/23/17	Sunday	8/23/17	105600	9/23/17	17500	10/23/17	113200	11/23/17
7/24/17	108700	8/24/17	101200	9/24/17	Sunday	10/24/17	127000	11/24/17
7/25/17	110300	8/25/17	80400	9/25/17	102400	10/25/17	138100	11/25/17
7/26/17	103300	8/26/17	14300	9/26/17	123600	10/26/17	125300	11/26/17
7/27/17	86500	8/27/17	Sunday	9/27/17	102700	10/27/17	91200	11/27/17
7/28/17	31700	8/28/17	101400	9/28/17	82600	10/28/17	23900	11/28/17
7/29/17	Saturday	8/29/17	86600	9/29/17	87500	10/29/17	Sunday	11/29/17
7/30/17	Sunday	8/30/17	94400	9/30/17	26400	10/30/17	118200	11/30/17

7/31/17	95900	8/31/17	95500		10/31/17	118500
TOTALS	1886500		2257300	2080200		2453300
Total Gallons Per Mc	1886500		2257300	2080200		2453300
Max Gallons Per Day	131,500		140,700	127,400		138,100
Avg Gallons Per Day	82,021		86,819	83,208		98,132
Total Gallons in Rep	12,478,600					
Max Gallons Per Day	140,700					

GALLONS	DATE	GALLONS
116400	12/1/17	91100
114500	12/2/17	38000
53300	12/3/17	Sunday
33000	12/4/17	122600
Sunday	12/5/17	121000
127200	12/6/17	112800
130200	12/7/17	115200
122700	12/8/17	71100
127300	12/9/17	39200
35800	12/10/17	Sunday
23700	12/11/17	91600
Sunday	12/12/17	95400
114400	12/13/17	92100
121400	12/14/17	91100
124200	12/15/17	68400
119800	12/16/17	28000
47400	12/17/17	Sunday
Saturday	12/18/17	102200
Sunday	12/19/17	107200
124800	12/20/17	107300
103400	12/21/17	101300
58800	12/22/17	31100
Holiday	12/23/17	Saturday
Holiday	12/24/17	Sunday
Saturday	12/25/17	Holiday
Sunday	12/26/17	Holiday
107500	12/27/17	Holiday
118100	12/28/17	Shut down
121100	12/29/17	Shut down
129600	12/30/17	Saturday

	12/31/17	Sunday
2174600		1626700
2174600		1626700
130,200		122,600
98,845		81,335

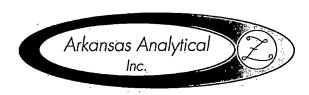
.

SEMI-ANNUAL REPORT CALCULATION WORKSHEET (July-December)

Process	Average	Maximum	Type of Discharge
Regulated (Core & Anc)	67818	150000	POTW Continuous
Regulated (Cyanide)	0	0	NA
§403.6(e) Unregulated*	0	0	NA
§403.6(e) Dilute	0	0	NA
Cooling Water	0	0	NA
Sanitary	44349	98092	POTW Continuous
Total Flow to POTW	87,847.28	194,299.44	********

TOTAL	NUMBER	AVERAGE	TOTAL	%	MAXIMUM	MAXIMUM
H2O TO	OF	GALLONS	H20	OF H2O	DAY	GALLONS
PLANT*	DAYS	PER DAY	TREATED**	TREATED	TREATED**	PER DAY
20638900	184	112168	12478600	60.5%	150000	248092

TOTAL H20 TREATED**	NUMBER OF DAYS	AVERAGE REGULATED TOTAL	AVERAGE GALLONS PER DAY	AVERAGE SANITARY	MAXIMUM DAY TREATED**	MAXIMUM GALLONS PER DAY	MAXIMUM SANITARY
12,478,600	184	67818	112168	44349	150000	248092	98092


*NUMBERS FROM WATER BILLS

**NUMBERS FROM THE ECOLOGY LOG BOOK

o Plater 097500 806,700	NE Front 4098000	SE Front 4099000	Plastics	Toilet Seats	Toilet Seats
	4098000	4099000			
806 700		4033000	4100000	4110000	4111000
,,,,,,,,	536,900	1,909,000		231,200	32,700
391,100	677,400	2,224,000	Y KARA	246,500	33,900
346,500	579,200	1,818,000		144,300	31,700
398,400	690,800	1,711,000	PORTER SE	235,700	33,700
347,000	750,900	2,680,000		294,500	51,400
293,400	636,500	1,910,000		365,400	37,600
359,300	159,200	2,001,000		492,600	32,800
110,700	157,100	1,736,000		601,900	35,100
598,200	182,600	2,058,000		1,154,400	35,500
525,700	161,000	1,795,000		644,800	35,900
637,600	204,200	2,042,000		687,700	32,900
666 200	177,100	2,293,000		687,700	33,700
,200					
3	59,300 10,700 98,200 25,700	59,300 159,200 10,700 157,100 98,200 182,600 25,700 161,000 37,600 204,200	59,300 159,200 2,001,000 10,700 157,100 1,736,000 98,200 182,600 2,058,000 25,700 161,000 1,795,000 37,600 204,200 2,042,000	59,300 159,200 2,001,000 10,700 157,100 1,736,000 98,200 182,600 2,058,000 25,700 161,000 1,795,000 37,600 204,200 2,042,000	59,300 159,200 2,001,000 492,600 10,700 157,100 1,736,000 601,900 98,200 182,600 2,058,000 1,154,400 25,700 161,000 1,795,000 644,800 37,600 204,200 2,042,000 687,700

aucet Plant Total	16163900

	Cd Max	Cd Avg	Cr Max	Cr Avg	Cu Max	Cu Avg	Pb Max	Pb Avg	Ni Max	Ni Avg	Ag Max	Ag Avg	Zn Max	Zn Avg	TTO Max	TTO Avg	Cn Max	Cn Avg
July	APPLICATION OF	TABLES EL	0.17	0.11	0.17				1.07	0.79			0.04	0.03				THE WAY
August			0.11	0.1	0.23	0.15			0.97	0.64				0.03				
September			0.19	0.11	0.16	0.14	and the training		0.71	0.56			0.03	0.03				CHARLES TO
October			0.44	0.21	0.12	0.11			0.67	0.39								SAN COM
November			0.36	0.2	0.26	0.15			1.02	0.79			0.09	0.04				THE WAY
December	0.008	0.008		0.2	0.12	80.0		0.015	0.77	0.82		0.02		0.03		0		0.02
Max Measured	0.0	800	0.4	4	0	.26		0.015	1.0)7	0.	02	0.	09		0	0.0	02
Avg Measured	0.0	800	0.15	55	0.	.12	-	0.015	0.6316	66667	0.	02	0.	03	(0	0.0	02

8100 National Dr. - Little Rock, AR 72209 501-455-3233 Fax 501-455-6118

13 December 2017

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017

SDG Number: 1712070

Enclosed are the results of analyses for samples received by the laboratory on 06-Dec-17 10:03. If you have any questions concerning this report, please feel free to contact me.

Sample Receipt Information:

Custody Seals	✓
Containers Correct	
COC/Labels Agree	~
Received On Ice	
Temperature on Receipt	4.0°C

Sincerely,

Norma James and/or Teresa Coins

Norma James / Cheresa Cains

Technical Director and/or QA Officer

This document is intended only for the use of the person(s) to whom it is expressly addressed. This document may contain information that is confidential and legally privileged. If you are not the intended recipient, you are notified that any disclosure, distribution, or copying of this document is strictly prohibited. If you have received this document in error, please destroy.

James House

Kohler-Plating - Sheridan

415 S Oklahoma St.

Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03

Sample Delivery Group - 1712070

One OR more of the qualifiers described below may appear in this report. Qualifiers in RED apply to this SDG (Sample Delivery Group).

QUALITY CONTROL QUALIFIERS:

Qualifier

Description

E20

Sample used as "parent" for the associated analytical batch.

%D3/S-01 Surrogate failed to recover within acceptance criteria (%D3/S-01). E1

Results associated with this surrogate were qualified as "estimated" (E1).

В Present in the Associated Blank Present in Blank, but Not In the Sample. **B1**

%D2 / E5 Laboratory Control Spike (LCS) and/or Laboratory Control Spike Duplicate (LCSD) failed to recover with acceptance criteria (%D2).

Associated results were qualified as "estimated" (E5).

%D1 Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) failed acceptance criteria.

MBA Failed criteria due the high concentration of analyte in the parent sample. MBI Failed criteria due an interference in the parent sample.

%D3 Quality Control Surrogate failed acceptance criteria.

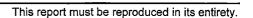
NREC Quality Control Surrogate failed.

CALIBRATION QUALIFIERS:

Qualifier

Description

CR Result above highest calibration standard, but within linear calibration range.


Est3 Result at the instrument was above the concentration of the highest standard in the calibration curve.

E5 Second Source Verification Failure Internal Standard Response Failure E7

E11 Initial Calibration Minimum Response Factor Failure

E21 **CCV Low CCV High** E-01

E35 Low Level CCV Failure

Arkansas Analytica

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03

ANALYTICAL RESULTS

Lab Number: Sample Name: Date/Time Collected: Sample Matrix:		1712070-01 Wastewater Composite 12/6/17 6:00 Water				
Acid Compounds	<u>Units</u>	<u>Result</u>	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
2,4,6-Trichlorophenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,4-Dichlorophenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,4-Dimethylphenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,4-Dinitrophenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2-Chlorophenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2-Nitrophenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
4,6-Dinitro-o-cresol	ug/L	< 52.1		12/12/17 19:27	B712164	EPA 625 (mod.)
4-Nitrophenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
p-Chloro-m-cresol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Pentachlorophenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Phenol	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,4,6-Tribromophenol [surr]	%	81.9		12/12/17 19:27	B712164	EPA 625 (mod.)
2-Fluorophenol [surr]	%	40.9		12/12/17 19:27	B712164	EPA 625 (mod.)
Phenol-d5 [surr]	%	34.8		12/12/17 19:27	B712164	EPA 625 (mod.)
Base/Neutral Compounds	<u>Units</u>	<u>Result</u>	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
1,2,4-Trichlorobenzene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
1,2-Dichlorobenzene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
1,2-Diphenyl Hydrazine	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
1,3-Dichlorobenzene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
1,4-Dichlorobenzene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,3,7,8-TCDD Screen	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,2'-Oxybis(1-Chloropropane)	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,4-Dinitrotoluene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2,6-Dinitrotoluene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2-Chloronaphthalene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
3,3'-Dichlorobenzidine	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
4-Bromophenyl-phenylether	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
4-Chlorophenyl-phenylether	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Acenaphthene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Acenaphthylene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Anthracene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Benzidine	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Benzo[a]pyrene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Benzo[b]fluoranthene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Benzo[g,h,i]perylene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Benzo[k]fluoranthene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Benzo (a) anthracene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Bis(2-chloroethoxy)methane	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Bis(2-chloroethyl)ether	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Bis(2-ethylhexyl)phthalate	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Butylbenzylphthalate	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Chrysene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Dibenz[a,h]anthracene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03

ANALYTICAL RESULTS

Lab Number: Sample Name: Date/Time Collected: Sample Matrix:		1712070-01 Wastewater Composite 12/6/17 6:00 Water				,
Base/Neutral Compounds	<u>Units</u>	<u>Result</u>	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	Method
Diethylphthalate	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Dimethylphthalate	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Di-n-butylphthalate	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Di-n-octylphthalate	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Fluorene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Hexachlorobenzene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Hexachlorobutadiene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Hexachlorocyclopentadiene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Hexachloroethane	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Indeno[1,2,3-cd]pyrene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Isophorone	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Naphthalene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Nitrobenzene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
N-Nitrosodimethylamine	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
N-Nitroso-di-n-propylamine	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
N-Nitrosodiphenylamine/diphenylamine	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Phenanthrene	ug/L	< 10.4	,	12/12/17 19:27	B712164	EPA 625 (mod.)
Pyrene	ug/L	< 10.4		12/12/17 19:27	B712164	EPA 625 (mod.)
2-Fluorobiphenyl [surr]	%	58.2		12/12/17 19:27	B712164	EPA 625 (mod.)
Nitrobenzene-d5 [surr]	%	54.4		12/12/17 19:27	B712164	EPA 625 (mod.)
Terphenyl-d14 [surr]	%	72.1		12/12/17 19:27	B712164	EPA 625 (mod.)
Pesticides/PCBs	<u>Units</u>	Result	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
Aldrin	ug/L	< 0.010	E5	12/12/17 16:27	B712163	EPA 608
alpha-BHC	ug/L	< 0.050		12/12/17 16:27	B712163	EPA 608
beta-BHC	ug/L	< 0.050		12/12/17 16:27	B712163	, EPA 608
gamma-BHC (Lindane)	ug/L	< 0.050		12/12/17 16:27	B712163	EPA 608
delta-BHC	ug/L	< 0.050		12/12/17 16:27	B712163	EPA 608
Chlordane	ug/L	< 0.200		12/12/17 16:27	B712163	EPA 608
4,4´-DDT	ug/L	< 0.020		12/12/17 16:27	B712163	EPA 608
4,4´-DDE	ug/L	< 0.100		12/12/17 16:27	B712163	EPA 608
4,4´-DDD	ug/L	< 0.100		12/12/17 16:27	B712163	EPA 608
Dieldrin	ug/L	< 0.020		12/12/17 16:27	B712163	EPA 608
Endosulfan I	ug/L	< 0.010		12/12/17 16:27	B712163	EPA 608
Endosulfan II	ug/L	< 0.020	E-01	12/12/17 16:27	B712163	EPA 608
Endosulfan sulfate	ug/L	< 0.100		12/12/17 16:27	B712163	EPA 608
Endrin	ug/L	< 0.020		12/12/17 16:27	B712163	EPA 608
Endrin aldehyde	ug/L	< 0.100		12/12/17 16:27	B712163	EPA 608
Heptachlor	ug/L	< 0.010		12/12/17 16:27	B712163	EPA 608
Heptachlor epoxide	ug/L	< 0.010		12/12/17 16:27	B712163	EPA 608
Chlorpyrifos	ug/L	< 0.070		12/12/17 16:27	B712163	EPA 608
Aroclor-1242	ug/L	< 0.200		12/12/17 16:27	B712163	EPA 608
Aroclor-1254	ug/L	< 0.200		12/12/17 16:27	B712163	EPA 608
Aroclor-1221	ug/L	< 0.200		12/12/17 16:27	B712163	EPA 608

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03

ANALYTICAL RESULTS

Lab Number: Sample Name: Date/Time Collected: Sample Matrix:		1712070-01 Wastewater Composite 12/6/17 6:00 Water				1
Pesticides/PCBs	<u>Units</u>	Result	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	Method
Aroclor-1232	ug/L	< 0.200		12/12/17 16:27	B712163	EPA 608
Aroclor-1248	ug/L	< 0.200		12/12/17 16:27	B712163	EPA 608
Aroclor-1260	ug/L	< 0.200		12/12/17 16:27	B712163	EPA 608
Aroclor-1016	ug/L	< 0.200	•	12/12/17 16:27	B712163	EPA 608
Toxaphene	ug/L	< 0.300		12/12/17 16:27	B712163	EPA 608
TCMX [surr]	%	28.0		12/12/17 16:27	B712163	EPA 608
DCBP [surr]	%	77.0		12/12/17 16:27	B712163	EPA 608
Total Metals	<u>Units</u>	<u>Result</u>	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
Arsenic	mg/L	< 0.0104		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Cadmium	mg/L	< 0.000520		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Chromium	mg/L	0.116		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Copper	mg/L	0.0484		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Lead	mg/L	< 0.0156		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Mercury	mg/L	< 0.000200		12/7/17 15:19	B712084	SW7470A/EPA245.1,3.0- 1994
Molybdenum	mg/L	< 0.0312		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Nickel	mg/L	0.460		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Selenium	mg/L	< 0.0520		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
Silver	mg/L	< 0.0208		12/12/17 9:30	B712127	EPA 200.7, Rev 4.4 (1994)
Zinc	mg/L	0.00871		12/11/17 17:57	B712127	EPA 200.7, Rev 4.4 (1994)
<u>Volatiles</u>	<u>Units</u>	Result	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	Method
1,1-Dichloroethane	ug/L	< 10.0		12/11/17 14:20	√B712132	EPA 624 (mod.), 1995
1,1-Dichloroethene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,1,1-Trichloroethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,1,2-Trichloroethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,1,2,2-Tetrachloroethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,2-Dichlorobenzene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,2-Dichloropropane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,2-Dichloroethane	.ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,3-Dichlorobenzene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,4-Dichlorobenzene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
2-Chloroethyl vinyl ether	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Acrylonitrile	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995 EPA 624 (mod.), 1995
Benzene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Bromodichloromethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Bromoform	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Acrolein	ug/L	< 10.0	E20, E21	12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Bromomethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Carbon tetrachloride	ug/L	< 10.0	•	12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Chlorobenzene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Chlorodibromomethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Chloroethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Chloroform	ug/L	< 10.0		12/11/17 14:20	B712132	

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03

ANALYTICAL RESULTS

Lab Number: Sample Name: Date/Time Collected: Sample Matrix:		1712070-01 Wastewater Composite 12/6/17 6:00 Water				
<u>Volatiles</u> Chloromethane	<u>Units</u> ug/L	<u>Result</u> < 10.0	Qualifier(s) E5	Date/Time Analyzed 12/11/17 14:20	<u>Batch</u> B712132	Method EPA 624 (mod.), 1995
cis-1,3-Dichloropropene	ug/L ug/L	< 10.0	£3	12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Ethylbenzene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Methylene chloride	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Tetrachloroethene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Toluene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
trans-1,2-Dichloroethene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Trichloroethene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
trans-1,3-Dichloropropene	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Vinyl chloride	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Dichlorodifluoromethane	ug/L	< 10.0		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
4-Bromofluorobenzene [surr]	%	96.2		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
1,2-Dichloroethane-d4 [surr]	%	104		12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Toluene-d8 [surr]	%	108	2	12/11/17 14:20	B712132	EPA 624 (mod.), 1995
Wet Chemistry	<u>Units</u>	<u>Result</u>	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
BOD-5	mg/L	4.58	E5	12/7/17 9:35	B712078	SM 5210 B-2011, Hach 10360
Cyanide (total)	mg/L	0.019		12/7/17 10:41	B712066	SM 4500-CN B,E-2011
TSS	mg/L	3.00		12/8/17 10:30	B712096	J-3765-85/SM2540 D-2011
ANALYTICAL RESULTS					<u>.</u>	

<u>A1</u>

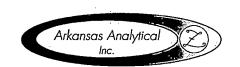
Lab Number:	1712070-02			
Sample Name:	Wastewater Grab			
Date/Time Collected:	12/6/17 6:00			
Sample Matrix:	Water			

Wet Chemistry	<u>Units</u>	Result	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
Oil and Grease	ma/L	< 3.50		12/11/17 8:10	B712117	EPA1664 Mod, Rev. B 2010

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03


		Wet Chemistry Bate	ch: B712066 (Water)			
	Prepared: 06	-Dec-17 13:32 By: SP	Analyzed: 07-Dec-17 10:41	By: SP		
<u>Analyte</u>	BLK	LCS / LCSD	MS / MSD	<u>Dup</u>	RPD	Qualifiers
Cyanide (total)	<0.010 mg/L	100% / NA	101% / 96.7%		3.81%	
• , ,	v			•		
		Wet Chemistry Bate	ch: B712078 (Water)			
	Prepared: 07	'-Dec-17 09:35 By: HF	Analyzed: 07-Dec-17 09:35	By: HF		
<u>Analyte</u>	BLK	LCS / LCSD	MS / MSD	Dup	RPD	Qualifiers
BOD-5	<2.00 mg/L	79.8% / 81.8%	NA / NA		2.50%	%D2
·		Total Metals Batch				
	Prepared: 07	'-Dec-17 13:50 By: ST	Analyzed: 07-Dec-17 15:17	By: ST		
<u>Analyte</u>	. <u>BLK</u>	LCS / LCSD	MS / MSD	<u>Dup</u>	<u>RPD</u>	Qualifiers
Mercury	<0.000200 mg/L	101% / NA	100% / 103%		2.82%	
	Prepared: 08	Wet Chemistry Bate -Dec-17 10:30 Bv: MH	 ch: B712096 (Water) · Analyzed: 08-Dec-17 10:30	Bv: MH		,
Analyte	BLK	LCS / LCSD	MS / MSD	Dup	RPD	Qualifiers
TSS	<1.00 mg/L		NA / NA			
TSS	<1.00 mg/L	88.0% / 86.0%	NA / NA		2.30%	
TSS		88.0% / 86.0% Wet Chemistry Bate	ch: B712117 (Water)	By: CNW		
	Prepared: 11-D	88.0% / 86.0% Wet Chemistry Bate Dec-17 07:59 By: CNW	ch: B712117 (Water) · Analyzed: 11-Dec-17 08:10		2.30%	
<u>Analyte</u>	Prepared: 11-D	88.0% / 86.0% Wet Chemistry Bate Dec-17 07:59 By: CNW	ch: B712117 (Water) · Analyzed: 11-Dec-17 08:10 <u>MS / MSD</u>	By: CNW	2.30% RPD	
Analyte Oil and Grease	Prepared: 11-D	88.0% / 86.0% Wet Chemistry Bate Dec-17 07:59 By: CNW	ch: B712117 (Water) · Analyzed: 11-Dec-17 08:10		2.30%	
<u>Analyte</u>	Prepared: 11-E BLK <3.50 mg/L	88.0% / 86.0% Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batel	ch: B712117 (Water) • Analyzed: 11-Dec-17 08:10	<u>Dup</u>	2.30% RPD	Qualifiers
<u>Analyte</u>	Prepared: 11-E BLK <3.50 mg/L	88.0% / 86.0% Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batel	ch: B712117 (Water) · Analyzed: 11-Dec-17 08:10 <u>MS / MSD</u> 79.2% / NA	<u>Dup</u>	2.30% <u>RPD</u> 0.932%	
<u>Analyte</u> Oil and Grease	Prepared: 11-D BLK <3.50 mg/L Prepared: 1	88.0% / 86.0% Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batel	ch: B712117 (Water) • Analyzed: 11-Dec-17 08:10	<u>Dup</u>	2.30% RPD	Qualifiers
Analyte Oil and Grease Analyte	Prepared: 11-D BLK <3.50 mg/L Prepared: 1	88.0% / 86.0% Wet Chemistry Bate Dec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batcl 1-Dec-17 12:20 By: TA	ch: B712117 (Water) • Analyzed: 11-Dec-17 08:10	<u>Dup</u> By: TA	2.30% <u>RPD</u> 0.932%	Qualifiers
Analyte Oil and Grease Analyte Arsenic	Prepared: 11-E BLK <3.50 mg/L Prepared: 11 BLK <0.0104 mg/L <0.000520 mg/L	88.0% / 86.0% Wet Chemistry Bate Dec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batel 1-Dec-17 12:20 By: TA LCS / LCSD	ch: B712117 (Water) • Analyzed: 11-Dec-17 08:10	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601%	Qualifier
Analyte Oil and Grease Analyte Arsenic Cadmium	Prepared: 11-E BLK <3.50 mg/L Prepared: 1 BLK <0.0104 mg/L <0.000520 mg/L <0.0104 mg/L	88.0% / 86.0% Wet Chemistry Bate Dec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batel 1-Dec-17 12:20 By: TA LCS / LCSD 97.2% / NA	ch: B712117 (Water) - Analyzed: 11-Dec-17 08:10	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601% 0.334%	Qualifier
Analyte Oil and Grease Analyte Arsenic Cadmium Chromium	Prepared: 11-E BLK <3.50 mg/L Prepared: 1* BLK <0.0104 mg/L <0.000520 mg/L <0.0104 mg/L <0.000520 mg/L	88.0% / 86.0% Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batelec-17 12:20 By: TA LCS / LCSD 97.2% / NA 104% / NA 102% / NA 99.5% / NA	ch: B712117 (Water) • Analyzed: 11-Dec-17 08:10 MS / MSD 79.2% / NA h: B712127 (Water) • Analyzed: 11-Dec-17 17:53 MS / MSD 103% / 103% 105% / 104% 101% / 101% 96.2% / 96.3%	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601% 0.334% 0.112%	Qualifier
Analyte Oil and Grease Analyte Arsenic Cadmium Chromium Copper	Prepared: 11-E BLK <3.50 mg/L Prepared: 1* BLK <0.0104 mg/L <0.000520 mg/L <0.0104 mg/L <0.00520 mg/L <0.0156 mg/L	88.0% / 86.0% Wet Chemistry Bate Dec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batel 1-Dec-17 12:20 By: TA LCS / LCSD 97.2% / NA 104% / NA 102% / NA	ch: B712117 (Water) - Analyzed: 11-Dec-17 08:10	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601% 0.334%	Qualifier
Analyte Oil and Grease Analyte Arsenic Cadmium Chromium Copper Lead	Prepared: 11-E BLK <3.50 mg/L Prepared: 1* BLK <0.0104 mg/L <0.000520 mg/L <0.0104 mg/L <0.000520 mg/L	88.0% / 86.0% Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batelec-17 12:20 By: TA LCS / LCSD 97.2% / NA 104% / NA 102% / NA 99.5% / NA	ch: B712117 (Water) • Analyzed: 11-Dec-17 08:10 MS / MSD 79.2% / NA h: B712127 (Water) • Analyzed: 11-Dec-17 17:53 MS / MSD 103% / 103% 105% / 104% 101% / 101% 96.2% / 96.3%	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601% 0.334% 0.112%	Qualifier
Analyte Oil and Grease Analyte Arsenic Cadmium Chromium Copper Lead Molybdenum	Prepared: 11-E BLK <3.50 mg/L Prepared: 1* BLK <0.0104 mg/L <0.000520 mg/L <0.0104 mg/L <0.00520 mg/L <0.0156 mg/L	88.0% / 86.0% Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batelec-17 12:20 By: TA LCS / LCSD 97.2% / NA 104% / NA 102% / NA 99.5% / NA 105% / NA	ch: B712117 (Water) - Analyzed: 11-Dec-17 08:10	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601% 0.334% 0.112% 0.0254%	Qualifier
Analyte Oil and Grease Analyte Arsenic Cadmium Chromium Copper Lead Molybdenum Nickel	Prepared: 11-E BLK <3.50 mg/L Prepared: 1* BLK <0.0104 mg/L <0.00520 mg/L <0.00520 mg/L <0.0156 mg/L <0.0312 mg/L	Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batel 1-Dec-17 12:20 By: TA LCS / LCSD 97.2% / NA 104% / NA 102% / NA 99.5% / NA 105% / NA 98.3% / NA	ch: B712117 (Water) Analyzed: 11-Dec-17 08:10 MS / MSD 79.2% / NA h: B712127 (Water) Analyzed: 11-Dec-17 17:53 MS / MSD 103% / 103% 105% / 104% 101% / 101% 96.2% / 96.3% 98.5% / 98.5% 102% / 101%	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601% 0.334% 0.112% 0.0254% 0.774%	Qualifier
<u>Analyte</u>	Prepared: 11-E BLK <3.50 mg/L Prepared: 1* BLK <0.0104 mg/L <0.00520 mg/L <0.00520 mg/L <0.0156 mg/L <0.0312 mg/L <0.0104 mg/L	Wet Chemistry Batelec-17 07:59 By: CNW LCS / LCSD 80.1% / 80.9% Total Metals Batelec-17 12:20 By: TA LCS / LCSD 97.2% / NA 104% / NA 102% / NA 99.5% / NA 105% / NA 98.3% / NA 105% / NA	ch: B712117 (Water) Analyzed: 11-Dec-17 08:10 MS / MSD 79.2% / NA h: B712127 (Water) Analyzed: 11-Dec-17 17:53 MS / MSD 103% / 103% 105% / 104% 101% / 101% 96.2% / 96.3% 98.5% / 98.5% 102% / 101% 104% / 103%	<u>Dup</u> By: TA	RPD 0.932% RPD 0.351% 0.601% 0.334% 0.112% 0.0254% 0.774% 0.118%	

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03

QUALITY CONTROL RESULTS

Volatiles -- Batch: B712132 (Water)

Prepared: 11-Dec-17 10:37 By: CT -- Analyzed: 11-Dec-17 21:22 By: ct

<u>Analyte</u>	<u>BLK</u>	LCS	/ LC	SD	MS	/ MS	<u>SD</u>	<u>Dup</u>	<u>RPD</u>	Qualifiers
1,1,1-Trichloroethane	<10.0 ug/L	106%	1	NA	105%	1	108%		3.01%	
1,1,2,2-Tetrachloroethane	<10.0 ug/L	110%	1	NA	116%	1	114%		1.82%	
1,1,2-Trichloroethane	<10.0 ug/L	98.5%	/	NA	108%	1	107%		1.11%	
1,1-Dichloroethane	<10.0 ug/L	105%	/	NA	109%	1	111%		1.39%	
1,1-Dichloroethene	<10.0 ug/L	94.1%	1	NA	95.8%	1	112%		15.2%	
1,2-Dichlorobenzene	<10.0 ug/L	101%		NA	96.2%	1	114%		16.9%	
1,2-Dichloroethane	<10.0 ug/L	102%	1	NA	97.5%	1	101%		2.99%	
1,2-Dichloropropane	<10.0 ug/L	115%	1	NA	120%	1	123%		1.91%	
1,3-Dichlorobenzene	<10.0 ug/L	106%	1	NA	106%	1	115%		7.82%	
1,4-Dichlorobenzene	<10.0 ug/L	104%	1	NA	105%	1	107%	•	1.79%	
2-Chloroethyl vinyl ether	<10.0 ug/L	91.6%	1	NA	96.1%	1	97.7%		1.63%	
Acrolein	<10.0 ug/L	31.2%	1	NA	MBI	1	MBI		%	E21, MBI
Acrylonitrile	<10.0 ug/L	109%	1	NA	100%	1	108%		7.42%	
Benzene	<10.0 ug/L	100%	1	NA	102%	1	109%		6.23%	
Bromodichloromethane	<10.0 ug/L	94.0%	1	NA	98.6%	1	110%		10.4%	
Bromoform	<10.0 ug/L	108%	1	NA	110%	1	119%		7.30%	
Bromomethane	<10.0 ug/L	82.5%	1	NA	79.9%	1	85.2%		6.38%	
Carbon tetrachloride	<10.0 ug/L	101%	1	NA	105%	1	.~108 %		3.12%	
Chlorobenzene	<10.0 ug/L	97.3%	1	NA	115%	1	116%		1.46%	
Chlorodibromomethane	<10.0 ug/L	117%	1	NA	122%	1	122%		0.450%	
Chloroethane	<10.0 ug/L	96.5%	1	NA	104%	1	117%		12.5%	
Chloroform	<10.0 ug/L	101%	1	NA	97.5%	1	101%		3.83%	
Chloromethane	<10.0 ug/L	130%	1	NA	123%	1	108%		12.8%	E5
cis-1,3-Dichloropropene	<10.0 ug/L	111%	1	NA	105%	1	115%		9.33%	
Dichlorodifluoromethane	<10.0 ug/L	94.8%	1	NA	114%	1	120%		4.84%	
Ethylbenzene	<10.0 ug/L	113%	1	NA	119%	1	119%		0.551%	
Methylene chloride	<10.0 ug/L	102%	1	NA	102%	1	95.9%		6.55%	
Tetrachloroethene	<10.0 ug/L	104%	1	NA	115%	1	113%		1.75%	
Toluene	<10.0 ug/L	117%	1	NA	127%	1	125%		1.15%	
trans-1,2-Dichloroethene	<10.0 ug/L	107%	1	NA	111%	1	111%		0.287%	
trans-1,3-Dichloropropene	<10.0 ug/L	104%		NA	108%	1	121%		11.8%	
Trichloroethene	<10.0 ug/L	97.0%		NA	105%	1	109%		4.12%	
Vinyl chloride	<10.0 ug/L	116%		NA	113%	1	120%		6.18%	
1,2-Dichloroethane-d4 [surr]	95.1 %	94.3%		NA	94.4%	1	102%		NA	
4-Bromofluorobenzene [surr]	96.7 %	102%	1	NA	107%	1	96.0%		NA	
Toluene-d8 [surr]	109 %	110%	1	NA	118%	1	116%		NA	

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03 QUALITY CONTROL RESULTS

Pesticides/PCBs -- Batch: B712163 (Water)

Prepared: 12-Dec-17	13-20 By: KR -	- Analyzed: 12-Dec.	17 16:14 Rv: TR
riepaieu. IA-Dec-II	13.20 Dy. NN "	- Milalyzcu. Iz-Dec	· /

<u>Analyte</u>	BLK	LCS / LCSD	MS / MSD	Dup	RPD	Qualifiers
4,4´-DDD	<0.100 ug/L	76.5% / 78.0%	73.2% / NA		1.89%	
4,4'-DDE	<0.100 ug/L	71.0% / 72.4%	69.7% / N A		2.06%	
4,4'-DDT	<0.020 ug/L	75.8% / 78.0%	72.4% / NA		2.78%	
Aldrin	<0.010 ug/L	29.5% / 48.6%	54.6% / NA		48.7%	%D2
alpha-BHC	<0.050 ug/L	71.7% / 70.5%	54.4% / NA		1.62%	
beta-BHC	<0.050 ug/L	68.8% / 69.8%	66.3% / NA		1.40%	
delta-BHC	<0.050 ug/L	76.9% / 76.3%	71.2% / NA		0.751%	
Dieldrin	<0.020 ug/L	71.3% / 72.3%	66.4% / NA		1.51%	
Endosulfan I	<0.010 ug/L	64.1% / 63.8%	59.6% / NA		0.502%	
Endosulfan II	<0.020 ug/L	75.9% / 77.5%	71.4% / NA		2.15%	E-01
Endosulfan sulfate	<0.100 ug/L	81.2% / 83.7%	76.1% / NA		3.08%	
Endrin	<0.020 ug/L	71.1% / 73.4%	68.4% / NA		3.20%	
Endrin aldehyde	<0.100 ug/L	72.8% / 80.4%	63.8% / NA		9.90%	
gamma-BHC (Lindane)	<0.050 ug/L	71.0% / 70.5%	65.3% / NA		0.687%	
Heptachlor	<0.010 ug/L	36.9% / 51.2%	56.1% / NA		32.4%	
Heptachlor epoxide	<0.010 ug/L	65.1% / 65.3%	60.1% / NA		0.424%	
DCBP [surr]	81.9 %	82.0% / 86.3%	66.7% / NA		NA	
TCMX [surr]	60.0 %	63.0% / 50.1%	57.2% / NA		NA	

James House Kohler-Plating - Sheridan 415 S Oklahoma St. Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03 QUALITY CONTROL RESULTS

Base/Neutral Compounds -- Batch: B712164 (Water)

Prepared: 12-Dec-17 14:15 By: KR -- Analyzed: 12-Dec-17 18:41 By: KR

<u>Analyte</u>	<u>BLK</u>	LCS / LCSD	MS / MSD	<u>Dup</u> <u>RPD</u> <u>Qualifier</u>
1,2,4-Trichlorobenzene	<10.0 ug/L	61.5% / 56.6%	46.1% / NA	8.20%
1,2-Dichlorobenzene	<10.0 ug/L	62.2% / 57.2%	43.9% / NA	8.39%
1,2-Diphenyl Hydrazine	<10.0 ug/L	79.2% / 79.4%	68.5% / NA	0.305%
1,3-Dichlorobenzene	<10.0 ug/L	61.0% / 56.3%	43.0% / NA	7.97%
1,4-Dichlorobenzene	<10.0 ug/L	61.6% / 56.1%	43.0% / NA	9.47%
2,2'-Oxybis(1-Chloropropane)	<10.0 ug/L	66.1% / 64.0%	48.6% / NA	3.23%
2,4,6-Trichlorophenol	<10.0 ug/L	78.5% / 81.7%	68.5% / NA	4.06%
2,4-Dichlorophenol	<10.0 ug/L	74.9% / 76.4%	63.8% / NA	2.03%
2,4-Dimethylphenol	<10.0 ug/L	65.8% / 69.5%	54.0% / NA	5.41%
2,4-Dinitrophenol	<10.0 ug/L	64.8% / 76.4%	71.2% / NA	16.4%
2,4-Dinitrotoluene	<10.0 ug/L	82.1% / 86.8%	76.7% / NA	5.64%
2,6-Dinitrotoluene	<10.0 ug/L	82.4% / 86.3%	72.7% / NA	4.62%
2-Chloronaphthalene	<10.0 ug/L	74.1% / 71.1%	57.7% / NA	4.12%
2-Chlorophenol	<10.0 ug/L	66.2% / 67.0%	49.8% / NA	1.23%
2-Nitrophenol	<10.0 ug/L	69.9% / 73.1%	55.1% / NA	4.49%
3,3'-Dichlorobenzidine	<10.0 ug/L	78.5% / 78.5%	64.7% / NA	0.0318%
4,6-Dinitro-o-cresol	<50.0 ug/L	77.8% / 81.6%	68.8% / NA	4.84%
4-Bromophenyl-phenylether	<10.0 ug/L	78.3% / 81.1%	71.7% / NA	3.49%
4-Chlorophenyl-phenylether	<10.0 ug/L	75.0% / 74.8%	64.8% / NA	0.208%
4-Nitrophenol	<10.0 ug/L	52.5% / 57.8%	49.1% / NA	9.58%
Acenaphthene	<10.0 ug/L	73.0% / 73.2%	59.9% / NA	0.323%
Acenaphthylene	<10.0 ug/L	72.6% / 73.6%	60.0% / NA	1.34%
Anthracene	<10.0 ug/L	80.0% / 79.7%	73.1% / NA	0.322%
Benzidine	<10.0 ug/L	69.3% / 59.3%	40.0% / NA	15.6%
Benzo (a) anthracene	<10.0 ug/L	83.6% / 87.0%	77.8% / NA	3.97%
Benzo[a]pyrene	<10.0 ug/L	83.6% / 86.4%	77.7% / NA	3.31%
Benzo[b]fluoranthene	<10.0 ug/L	84.4% / 85.7%	77.8% / NA	1.51%
Benzo[g,h,i]perylene	<10.0 ug/L	82.0% / 84.0%	75.4% / NA	2.39%
Benzo[k]fluoranthene	<10.0 ug/L	82.8% / 84.7%	75.8% / NA	2.23%
Bis(2-chloroethoxy)methane	<10.0 ug/L <10.0 ug/L	69.1% / 68.6%	53.8% / NA	2.23% 0.636%
Bis(2-chloroethyl)ether	<10.0 ug/L	67.4% / 65.8%	50.3% / NA	2.47%
Bis(2-ethylhexyl)phthalate	<10.0 ug/L	91.0% / 95.7%	86.5% / NA	5.07%
Butylbenzylphthalate	<10.0 ug/L	88.5% / 94.2%	83.9% / NA	6.17%
Chrysene	<10.0 ug/L <10.0 ug/L	82.3% / 85.2%	76.6% / NA	3.52%
Dibenz[a,h]anthracene	<10.0 ug/L	60.1% / 61.9%	55.9% / NA	2.91%
Diethylphthalate	<10.0 ug/L	71.7% / 75.3%	65.4% / NA	4.91%
Dimethylphthalate	<10.0 ug/L	75.5% / 79.2%	66.9% / NA	4.73%
• •	<10.0 ug/L <10.0 ug/L	83.8% / 85.2%	79.4% / NA	1.62%
Di-n-butylphthalate	<10.0 ug/L <10.0 ug/L		87.3% / NA	7.84%
Di-n-octylphthalate	<10.0 ug/L <10.0 ug/L			
Fluorene			66.7% / NA	1.23%
Hexachlorobenzene	<10.0 ug/L	82.4% / 83.0%	74.8% / NA	0.655%
Hexachlorobutadiene	<10.0 ug/L	61.0% / 54.5%	44.7% / NA	11.3%
Hexachlorocyclopentadiene	<10.0 ug/L	55.2% / 52.2%	39.6% / NA	5.65%
Hexachloroethane	<10.0 ug/L	61.6% / 55.1%	41.7% / NA	11.1%
Indeno[1,2,3-cd]pyrene	<10.0 ug/L	84.6% / 87.8%	77.7% / NA	3.73%
Isophorone	<10.0 ug/L	67.2% / 69.7%	54.1% / NA	3.74%
Naphthalene	<10.0 ug/L	60.1% / 55.9%	46.5% / NA	7.21%
Nitrobenzene	<10.0 ug/L	68.5% / 69.2%	52.9% / NA	1.01%

James House

Kohler-Plating - Sheridan

415 S Oklahoma St.

Sheridan, AR 72150

Project: Semiannual Wastewater Sample(s)

Project Number: December 2017 Date Received: 06-Dec-17 10:03 **QUALITY CONTROL RESULTS**

Base/Neutral Compounds -- Batch: B712164 (Water)

Prepared: 12-Dec-17 14:15 By: KR -- Analyzed: 12-Dec-17 18:41 By: KR

<u>Analyte</u>	BLK	LCS /	LCSD	MS	/ MS	5	<u>Dup</u>	<u>RPD</u>	Qualifiers
N-Nitrosodimethylamine	<10.0 ug/L	45.1% /	46.4%	35.6%	1	NA		2.71%	
N-Nitroso-di-n-propylamine	<10.0 ug/L	70.5% /	70.3%	55.4%	1	NA		0.240%	
N-Nitrosodiphenylamine/diphenylamine	<10.0 ug/L	82.3% /	81.8%	73.7%	1	NA		0.637%	
p-Chloro-m-cresol	<10.0 ug/L	69.1% /	74.6%	65.3%	1	NA		7.62%	
Pentachlorophenol	<10.0 ug/L	82.6% /	90.4%	86.5%	1	NA		9.04%	
Phenanthrene	<10.0 ug/L	80.4% /	81.6%	. 73.5%	1	NA		1.46%	
Phenol	<10.0 ug/L	39.2% /	41.8%	33.6%	1	NA		6.62%	
Pyrene	<10.0 ug/L	82.9% /	87.7%	78.8%	1	NA		5.55%	
2,4,6-Tribromophenol [surr]	76.5 [~]	92.4% /	96.6%	86.8%	1	NA		NA	
2-Fluorobiphenyl [surr]	74.6 %	76.3%	76.1%	60.6%	1	NA		NA	
2-Fluorophenol [surr]	49.7 %	52.0% /	54.3%	40.2%	1	NA		NA	
Nitrobenzene-d5 [surr]	71.3 %	70.5%	71.0%	53.4%	1	NA		NA	1
Phenol-d5 [surr]	39.4 %	40.6%	42.4%	34.4%	1	NA		NA	
Terphenyl-d14 [surr]	82.8 %	83.9% /	89.2%	77.8%	.1	NA		NA	

QUALIFIER(S)

*%D2: Laboratory Control Spike and/or Laboratory Control Spike Duplicate Percent Recovery Does Not Meet Laboratory

Acceptance Criteria

Estimated Result; This Analyte Failed "High" in the CCV; If the sample is non-detect for this analyte, the CCV *E-01:

demonstrated the analyte would have been detected were it present.

Estimated Result Due to Matrix Spike and/or Matrix Spike Duplicate Failure; This sample was used as the "parent *E20:

sample" in MS/MSD prep.

*E21: Estimated Result; This Analyte failed (low) in the CCV.

Estimated Result Due to Quality Control Failure *E5:

*MBI: Masked By Interference

All Analysis performed according to EPA approved methodology when available:

SW 846, Revised December, 1996; EPA 600/4-79-020, Revised March, 1983; Standard Methods.

Instrument calibration and quality control samples performed at or above frequency specified in analytical method.

Reviewed by:

Norma James and/or Teresa Coins Technical Director and/or QA Officer

8100 National Dr. Little Rock, AR 72209 PHONE: 501-455-3233

FAX: 501-455-6118

CHAIN OF CUSTODY RECORD

CLIENT INFOR	RIVIATION						Project De	escription	Turnaround Time	,	Preservation Codes:								
Kohler							Wasetwate	er Sample	1 Day (100%)	1. Coo	1. Cool, 4 Degrees Centigrade					4. Thiosulfate for Dechlorination			
415 South Okla	ahoma St.					Semi-Annual TTO/PPPS		2 Day (50%)	2. Sulf	2. Sulfuric Acid (H ₂ SC			The same of the sa				· ·		
Sheridan, AR 72150			Reporting Information 3 Day (25%)			3 Day (25%)	li .	3. Nitric Acid (HNO ₃), pH < 2					6. Sodium Hydroxide (NaOH), pH > 12						
							Telephone: 87	70-942-2111 (5 Day (Routine)	5	TEST PARAMETE								Bottle Type Code
Attn: James H	ouse						Email: james.hous		Preservative Code						Ī	G = Glass; P = Plastic			
						1	joe.mcefroy@l neal.hollinger@		Bollle Type	P	Р	P	GV	GA	GA	GA		<u> </u>	V = Sepium; A = Amber
Mülə Sampler(s) Sigi	Journe mature		Sam	pler(s) Print		le horeu	JSON.	,	2		r, Cu, Pb, Hg, e, Ag, Zn	PPS Volatiles	PPS Base Neutral/Acids	PPS Pesticides/PCBs				Arkansas Analytical Work Order Number:
Fièld	SAMPLE C	OLLECTION			Number			SAMPLE		TSS	g	0 0	ola	ase	est	g			ŀ
Number	Date/s	Time/s	Grab	Сопр	of	Sample	IDENTI	FICATION/ DESC	PIDTION	BOD,	Cyanide	As, Cd, Cr, Mo, Ni, Se,	PS	PS E	PS	<u>=</u>			1712070
	12/5-12/6-201		Giab	X	 	 			KIFIION					7			<u> </u>		
	12/6/2017		 	├ -^-	12	li .	Wastewater C			X	X	X	<u> </u>	_X	X				01
			X	}	1		Wastewater G									X			02
	17/6/pmc17	6A.M	_X	 -	1_	Water	Wastewater G	rab - Lab QC Sam	nple							Х			
Inco		o <u>er/Preservalion</u> Ind/or preservation Ind/or preservatio		"															
	Data will be		•	-	 -														
	24 77 50	r II	- 11					1				-							
	<u> </u>				<u> </u>					 									
Relinguished by:	: (Signature)	Date/Time	- 1	2. Rec	eived b	y: (Sic	inature)	SAMPLE CO	ONDITION UPON F	RECEIPT	IN LAB			REIL	JARKS	S/SAN	IPLE (COMME	ENTS
Mayor		12/6/2017 8:00 AM		-	Par	rN.	sh	1. CUSTODY SEAR 2. CONTAINERS C 3. COC/LABELS AR	CORRECT:	Yes		0	Oi			SURE ت، ک		TS BY	Y Kohler
Relinquished by:	(Signature)	Date/Time		4. Rec	eived b	v lab:	(Signature)	4. RECEIVED ON I		Yes						121			
Far	rish	12:6:17	-	1	M	\U/		5. TEMPERATURE		 					riowi	120	000		
-Cim	_	10~2		,	00	14 0	0	6. TEMPERATURE	GUN ID:	ннт#2	-								
	l	1008			100	W	4	FOR C	OMPLETION BY L	AB ONL	Y								

10:29:43 AM

1/16/2018

Page

Account Number: Customer Name:

04111000

KOHLER CO * UTILITIES

Service Address: **PLASTICS** Type User: Meter Size: 20

	Date	Usage	Charges				
	.01/2018	29600	145.38				
	02/2017	22800	113.25				
	03/2017	23200	116.80				
	04/2017	55800	266.45				
	05/2017	26500	131.28				
	06/2017	35900	173.77				
I	07/2017	32800	159.68				
	08/2017	35100	172.33				
	09/2017	35500	173.05				
	10/2017	35900	173.77				
	11/2017	32900	159.86				
	12/2017	33700	164.14				
	Last Yr	29600	145.38				

TOTAL 205, 900

10:29:02 AM

1/16/2018

Page

1 of

Account Number:

04110000

Customer Name: KOHLER CO * UTILITIES

Type User:

Service Address:

PLASTICS

Meter Size: 30

	Date	Usage	Charges
	01/2018	567500	2,358.56
	02/2017	610400	2,524.80
į	03/2017	580000	2,405.70
	04/2017	463400	1,956.01
	05/2017	318100	1,394.53
	06/2017	767800	3,132.86
I	07/2017	492600	2,068.49
	08/2017	601900	2,490.69
	09/2017	1154400	4,629.74
	10/2017	644800	2,656.92
	11/2017	687700	2,823.17
	12/2017	687700	2,823.17
	Last Yr	567500	2,358.56

T. TAC 4,269,100

10:31:38 AM

1/16/2018

Page

1 of

1

Account Number:

04099000

Customer Name: KOHLER CO

KOHLER CO * UTILITIES

Type User: Meter Size:

! 60

Service Address: EAGLE ST

	Date	Usage	Charges
	01/2018	1813000	7,176.63
	02/2017	1982000	7,830.56
	03/2017	2404000	9,463.44
	04/2017	2302000	9,068.76
	05/2017	1623000	6,441.45
	06/2017	2596000	10,206.36
I	07/2017	2001000	7,904.08
	08/2017	1736000	6,878.69
	09/2017	2058000	8,124.64
	10/2017	1795000	7,106.98
	11/2017	2042000	8,062.73
	12/2017	2293000	9,033.93
	Last Yr	1813000	7,176.63

Forar 11,925,000

10:30:58 AM

1/16/2018

Page

1 of

1

20

1

Account Number:

Service Address:

04098000

Customer Name: KOHLER CO * UTILITIES

OKLAHOMA ST

Type User: Meter Size:

	Date	Usage	Charges
	01/2018	220000	1,012.72
	02/2017	263700	1,182.55
	03/2017	292300	1,294.20
	04/2017	232300	1,062.04
	05/2017	133300	627.67
	06/2017	216900	1,000.97
V	07/2017	159200	748.20
	08/2017	157100	738.72
	09/2017	182600	855.69
	10/2017	161000	754.28
	11/2017	204200	953.55
	12/2017	177100	831.58
	Last Yr	220000	1,012.72

1041200

10:30:25 AM

1/16/2018

Page

1 of

1

Account Number: 04097500

Customer Name: **KOHLER CO * UTILITIES**

Type User:

Meter Size: 20

Service Address: 415 OKLAHOMA ST

	Date	Usage	Charges
	01/2018	500000	2,096.15
	02/2017	419400	1,785.76
	03/2017	382900	1,643.29
	04/2017	486900	2,045.70
	05/2017	325900	1,422.74
	06/2017	444100	1,882.06
1	07/2017	359300	1,553.45
	08/2017	410700	1,751.35
	09/2017	598200	2,478.09
	10/2017	525700	2,196.33
	11/2017	637600	2,629.56
	12/2017	666200	2,741.21
	Last Yr	460000	1,941.37

TOTAL 3,197,700

Kohler Co. 415 South Oklahoma 87. Sheridan, ar 71250

U.S. POSTAGI PAID SHERIDAN, AF 72150 JAN 18 AMOUNT

1000

\$7.92 R2305E125647-02

Arhonsas Department at Environmental Quelity Attui. Gry Lester 5301 Northshore Orive North Little Ruch AK 72118